skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mathieu, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. One hypothesis for runaway stars (RSs) is that they are ejected from star clusters with high velocities relative to the cluster center-of-mass motion. There are two competing mechanisms for their production: supernova-based ejections in binaries, where one companion explodes, leaves no remnant, and launches the other companion at the instantaneous orbital velocity, and the disintegration of triples (or higher-order multiples), which produces a recoiled runaway binary (RB) and an RS. Aims. We search for RS candidates using data from the Gaia DR3 survey with a focus on triple disintegration since in this case the product is always a binary and a single star that should be moving in opposite directions. Methods. We created a systematic methodology to look for candidate RS-RB runaway pairs produced from the disintegration of bound three-body systems formed from single-binary interactions based on momentum conservation and causality. The method we use is general and can be applied to any cluster with a 5D kinematic data set. We used our criteria to search for these pairs in a 150 pc circular field of view surrounding the open cluster M67, which we used as a benchmark cluster to test the robustness of our method. Results. Our results reveal only one RS-RB pair that is consistent with all of our selection criteria out of an initial sample of 108pairs. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. null (Ed.)
    Context. Models of stellar structure and evolution can be constrained using accurate measurements of the parameters of eclipsing binary members of open clusters. Multiple binary stars provide the means to tighten the constraints and, in turn, to improve the precision and accuracy of the age estimate of the host cluster. In the previous two papers of this series, we have demonstrated the use of measurements of multiple eclipsing binaries in the old open cluster NGC 6791 to set tighter constraints on the properties of stellar models than was previously possible, thereby improving both the accuracy and precision of the cluster age. Aims. We identify and measure the properties of a non-eclipsing cluster member, V56, in NGC 6791 and demonstrate how this provides additional model constraints that support and strengthen our previous findings. Methods. We analyse multi-epoch spectra of V56 from FLAMES in conjunction with the existing photometry and measurements of eclipsing binaries in NGC6971. Results. The parameters of the V56 components are found to be M p  = 1.103 ± 0.008  M ⊙ and M s  = 0.974 ± 0.007  M ⊙ , R p  = 1.764 ± 0.099  R ⊙ and R s  = 1.045 ± 0.057  R ⊙ , T eff,p  = 5447 ± 125 K and T eff,s  = 5552 ± 125 K, and surface [Fe/H] = +0.29 ± 0.06 assuming that they have the same abundance. Conclusions. The derived properties strengthen our previous best estimate of the cluster age of 8.3 ± 0.3 Gyr and the mass of stars on the lower red giant branch (RGB), which is M RGB  = 1.15 ± 0.02  M ⊙ for NGC 6791. These numbers therefore continue to serve as verification points for other methods of age and mass measures, such as asteroseismology. 
    more » « less